Immunization Schedules
- Read more about Immunization Schedules
- Log in or register to post comments
Child, adolescent, and adult immunization schedules from the CDC for 2024.
Child, adolescent, and adult immunization schedules from the CDC for 2024.
Recommendations for Ages 18 Years or Younger, United States, 2022
Major recommendations
Begin screening at age 25 years regardless of sexual history or HPV vaccination status (strong recommendation)
Primary HPV testing every 5 years through age 65 years (strong recommendation)
If primary HPV testing is not available use cotesting (HPV+ cytology) every 5 years or every 3 years if cytology only (strong recommendation)
Discontinue screening at age 65 years if no history of cervical intraepithelial neoplasia grade 2 or more severe diagnosis in last 25 years and adequate negative prior screening in last 10 years (qualified recommendation)
Importance
Short-term and long-term persistent postacute sequelae of COVID-19 (PASC) have not been systematically evaluated. The incidence and evolution of PASC are dependent on time from infection, organ systems and tissue affected, vaccination status, variant of the virus, and geographic region.
Objective
To estimate organ system–specific frequency and evolution of PASC.
Evidence Review
PubMed (MEDLINE), Scopus, the World Health Organization Global Literature on Coronavirus Disease, and CoronaCentral databases were searched from December 2019 through March 2021. A total of 2100 studies were identified from databases and through cited references. Studies providing data on PASC in children and adults were included. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines for abstracting data were followed and performed independently by 2 reviewers. Quality was assessed using the Newcastle-Ottawa Scale for cohort studies. The main outcome was frequency of PASC diagnosed by (1) laboratory investigation, (2) radiologic pathology, and (3) clinical signs and symptoms. PASC were classified by organ system, ie, neurologic; cardiovascular; respiratory; digestive; dermatologic; and ear, nose, and throat as well as mental health, constitutional symptoms, and functional mobility.
Findings
From a total of 2100 studies identified, 57 studies with 250 351 survivors of COVID-19 met inclusion criteria. The mean (SD) age of survivors was 54.4 (8.9) years, 140 196 (56%) were male, and 197 777 (79%) were hospitalized during acute COVID-19. High-income countries contributed 45 studies (79%). The median (IQR) proportion of COVID-19 survivors experiencing at least 1 PASC was 54.0% (45.0%-69.0%; 13 studies) at 1 month (short-term), 55.0% (34.8%-65.5%; 38 studies) at 2 to 5 months (intermediate-term), and 54.0% (31.0%-67.0%; 9 studies) at 6 or more months (long-term). Most prevalent pulmonary sequelae, neurologic disorders, mental health disorders, functional mobility impairments, and general and constitutional symptoms were chest imaging abnormality (median [IQR], 62.2% [45.8%-76.5%]), difficulty concentrating (median [IQR], 23.8% [20.4%-25.9%]), generalized anxiety disorder (median [IQR], 29.6% [14.0%-44.0%]), general functional impairments (median [IQR], 44.0% [23.4%-62.6%]), and fatigue or muscle weakness (median [IQR], 37.5% [25.4%-54.5%]), respectively. Other frequently reported symptoms included cardiac, dermatologic, digestive, and ear, nose, and throat disorders.
Conclusions and Relevance
In this systematic review, more than half of COVID-19 survivors experienced PASC 6 months after recovery. The most common PASC involved functional mobility impairments, pulmonary abnormalities, and mental health disorders. These long-term PASC effects occur on a scale that could overwhelm existing health care capacity, particularly in low- and middle-income countries.
This report updates the 2020–21 recommendations of the Advisory Committee on Immunization Practices (ACIP) regarding the use of seasonal influenza vaccines in the United States (MMWR Recomm Rep 2020;69[No. RR-8]). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. For each recipient, a licensed and age-appropriate vaccine should be used. ACIP makes no preferential recommendation for a specific vaccine when more than one licensed, recommended, and age-appropriate vaccine is available. During the 2021–22 influenza season, the following types of vaccines are expected to be available: inactivated influenza vaccines (IIV4s), recombinant influenza vaccine (RIV4), and live attenuated influenza vaccine (LAIV4).
The 2021–22 influenza season is expected to coincide with continued circulation of SARS-CoV-2, the virus that causes COVID-19. Influenza vaccination of persons aged ≥6 months to reduce prevalence of illness caused by influenza will reduce symptoms that might be confused with those of COVID-19. Prevention of and reduction in the severity of influenza illness and reduction of outpatient visits, hospitalizations, and intensive care unit admissions through influenza vaccination also could alleviate stress on the U.S. health care system. Guidance for vaccine planning during the pandemic is available at https://www.cdc.gov/vaccines/pandemic-guidance/index.html. Recommendations for the use of COVID-19 vaccines are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/covid-19.html, and additional clinical guidance is available at https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-v....
Updates described in this report reflect discussions during public meetings of ACIP that were held on October 28, 2020; February 25, 2021; and June 24, 2021. Primary updates to this report include the following six items. First, all seasonal influenza vaccines available in the United States for the 2021–22 season are expected to be quadrivalent. Second, the composition of 2021–22 U.S. influenza vaccines includes updates to the influenza A(H1N1)pdm09 and influenza A(H3N2) components. U.S.-licensed influenza vaccines will contain hemagglutinin derived from an influenza A/Victoria/2570/2019 (H1N1)pdm09-like virus (for egg-based vaccines) or an influenza A/Wisconsin/588/2019 (H1N1)pdm09-like virus (for cell culture–based and recombinant vaccines), an influenza A/Cambodia/e0826360/2020 (H3N2)-like virus, an influenza B/Washington/02/2019 (Victoria lineage)-like virus, and an influenza B/Phuket/3073/2013 (Yamagata lineage)-like virus. Third, the approved age indication for the cell culture–based inactivated influenza vaccine, Flucelvax Quadrivalent (ccIIV4), has been expanded from ages ≥4 years to ages ≥2 years. Fourth, discussion of administration of influenza vaccines with other vaccines includes considerations for coadministration of influenza vaccines and COVID-19 vaccines. Providers should also consult current ACIP COVID-19 vaccine recommendations and CDC guidance concerning coadministration of these vaccines with influenza vaccines. Vaccines that are given at the same time should be administered in separate anatomic sites. Fifth, guidance concerning timing of influenza vaccination now states that vaccination soon after vaccine becomes available can be considered for pregnant women in the third trimester. As previously recommended, children who need 2 doses (children aged 6 months through 8 years who have never received influenza vaccine or who have not previously received a lifetime total of ≥2 doses) should receive their first dose as soon as possible after vaccine becomes available to allow the second dose (which must be administered ≥4 weeks later) to be received by the end of October. For nonpregnant adults, vaccination in July and August should be avoided unless there is concern that later vaccination might not be possible. Sixth, contraindications and precautions to the use of ccIIV4 and RIV4 have been modified, specifically with regard to persons with a history of severe allergic reaction (e.g., anaphylaxis) to an influenza vaccine. A history of a severe allergic reaction to a previous dose of any egg-based IIV, LAIV, or RIV of any valency is a precaution to use of ccIIV4. A history of a severe allergic reaction to a previous dose of any egg-based IIV, ccIIV, or LAIV of any valency is a precaution to use of RIV4. Use of ccIIV4 and RIV4 in such instances should occur in an inpatient or outpatient medical setting under supervision of a provider who can recognize and manage a severe allergic reaction; providers can also consider consulting with an allergist to help identify the vaccine component responsible for the reaction. For ccIIV4, history of a severe allergic reaction (e.g., anaphylaxis) to any ccIIV of any valency or any component of ccIIV4 is a contraindication to future use of ccIIV4. For RIV4, history of a severe allergic reaction (e.g., anaphylaxis) to any RIV of any valency or any component of RIV4 is a contraindication to future use of RIV4.
This report focuses on recommendations for the use of vaccines for the prevention and control of seasonal influenza during the 2021–22 influenza season in the United States. A brief summary of the recommendations and a link to the most recent Background Document containing additional information are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html. These recommendations apply to U.S.-licensed influenza vaccines used according to Food and Drug Administration–licensed indications. Updates and other information are available from CDC’s influenza website (https://www.cdc.gov/flu); vaccination and health care providers should check this site periodically for additional information.
COVID-19 Vaccination
ACIP recommends use of COVID-19 vaccines within the scope of the Emergency Use Authorization or Biologics License Application for the particular vaccine. Interim ACIP recommendations for the use of COVID-19 vaccines can be found on the ACIP Vaccine Recommendations and Guidelines page.
On December 11, 2020, the US Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the Pfizer-BioNTech coronavirus disease 2019 (COVID-19) vaccine, administered as 2 doses separated by 21 days.1 Shortly after, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation for its use.2 Following implementation of vaccination, reports of anaphylaxis after the first dose of the Pfizer-BioNTech COVID-19 vaccine emerged.3 Anaphylaxis is a life-threatening allergic reaction that occurs rarely after vaccination, with onset typically within minutes to hours.4
Notifications and reports of suspected severe allergic reactions and anaphylaxis following vaccination were captured in the Vaccine Adverse Event Reporting System (VAERS), the national passive surveillance (spontaneous reporting) system for adverse events after immunization.5 Physicians at the US Centers for Disease Control and Prevention (CDC) evaluated these reports and applied Brighton Collaboration case definition criteria6 to classify case reports as anaphylaxis or not anaphylaxis. Nonallergic adverse events, mostly vasovagal or anxiety-related, were excluded from the analysis. Anaphylaxis and nonanaphylaxis allergic reaction cases with symptom onset occurring later than the day after vaccination were also excluded because of the difficulty in clearly attributing allergic reactions with delayed onset after vaccination. Because the Moderna COVID-19 vaccine was only available beginning December 21, 2020, this article focuses on the Pfizer-BioNTech COVID-19 vaccine.
During December 14 to 23, 2020, after administration of a reported 1 893 360 first doses of Pfizer-BioNTech COVID-19 vaccine (1 177 527 in women, 648 327 in men, and 67 506 with sex of recipient not reported),3 CDC identified 21 case reports submitted to VAERS that met Brighton Collaboration case definition criteria for anaphylaxis (Table), corresponding to an estimated rate of 11.1 cases per million doses administered. Four patients (19%) were hospitalized (including 3 in intensive care), and 17 (81%) were treated in an emergency department; 20 (95%) are known to have been discharged home or had recovered at the time of the report to VAERS. No deaths from anaphylaxis were reported.
On December 11, 2020, the Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the Pfizer-BioNTech COVID-19 (BNT162b2) vaccine (Pfizer, Inc; Philadelphia, Pennsylvania), a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine encoding the prefusion spike glycoprotein of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (1). Vaccination with the Pfizer-BioNTech COVID-19 vaccine consists of 2 doses (30 μg, 0.3 mL each) administered intramuscularly, 3 weeks apart. On December 12, 2020, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation* for use of the Pfizer-BioNTech COVID-19 vaccine in persons aged ≥16 years for the prevention of COVID-19. To guide its deliberations regarding the vaccine, ACIP employed the Evidence to Recommendation (EtR) Framework,† using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach.§ The recommendation for the Pfizer-BioNTech COVID-19 vaccine should be implemented in conjunction with ACIP's interim recommendation for allocating initial supplies of COVID-19 vaccines (2). The ACIP recommendation for the use of the Pfizer-BioNTech COVID-19 vaccine under EUA is interim and will be updated as additional information becomes available.
To date, the development of mRNA vaccines for the prevention of infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a success story, with no serious concerns identified in the ongoing phase 3 clinical trials.1 Minor local side effects such as pain, redness, and swelling have been observed more frequently with the vaccines than with placebo. Systemic symptoms such as fever, fatigue, headache, and muscle and joint pain have also been somewhat more common with the vaccines than with placebo, and most have occurred during the first 24 to 48 hours after vaccination.1 In the phase 1–3 clinical trials of the Pfizer–BioNTech and Moderna mRNA vaccines, potential participants with a history of an allergic reaction to any component of the vaccine were excluded. The Pfizer–BioNTech studies also excluded participants with a history of severe allergy associated with any vaccine (see the protocols of the two trials, available with the full text of the articles at NEJM.org, for full exclusion criteria).1,2 Hypersensitivity adverse events were equally represented in the placebo (normal saline) and vaccine groups in both trials.1
This report compiles and summarizes all recommendations from CDC’s Advisory Committee on Immunization Practices (ACIP) for use of meningococcal vaccines in the United States. As a comprehensive summary and update of previously published recommendations, it replaces all previously published reports and policy notes. This report also contains new recommendations for administration of booster doses of serogroup B meningococcal (MenB) vaccine for persons at increased risk for serogroup B meningococcal disease. These guidelines will be updated as needed on the basis of availability of new data or licensure of new meningococcal vaccines.
ACIP recommends routine vaccination with a quadrivalent meningococcal conjugate vaccine (MenACWY) for adolescents aged 11 or 12 years, with a booster dose at age 16 years. ACIP also recommends routine vaccination with MenACWY for persons aged ≥2 months at increased risk for meningococcal disease caused by serogroups A, C, W, or Y, including persons who have persistent complement component deficiencies; persons receiving a complement inhibitor (e.g., eculizumab [Soliris] or ravulizumab [Ultomiris]); persons who have anatomic or functional asplenia; persons with human immunodeficiency virus infection; microbiologists routinely exposed to isolates of Neisseria meningitidis; persons identified to be at increased risk because of a meningococcal disease outbreak caused by serogroups A, C, W, or Y; persons who travel to or live in areas in which meningococcal disease is hyperendemic or epidemic; unvaccinated or incompletely vaccinated first-year college students living in residence halls; and military recruits. ACIP recommends MenACWY booster doses for previously vaccinated persons who become or remain at increased risk.
In addition, ACIP recommends routine use of MenB vaccine series among persons aged ≥10 years who are at increased risk for serogroup B meningococcal disease, including persons who have persistent complement component deficiencies; persons receiving a complement inhibitor; persons who have anatomic or functional asplenia; microbiologists who are routinely exposed to isolates of N. meningitidis; and persons identified to be at increased risk because of a meningococcal disease outbreak caused by serogroup B. ACIP recommends MenB booster doses for previously vaccinated persons who become or remain at increased risk. In addition, ACIP recommends a MenB series for adolescents and young adults aged 16–23 years on the basis of shared clinical decision-making to provide short-term protection against disease caused by most strains of serogroup B N. meningitidis.