COVID-19 vaccine

Evaluation of Waning of SARS-CoV-2 Vaccine–Induced Immunity

Author/s: 
Menegale, Francesco, Manica, Mattia, Zardini, Agnese, Guzzetta, Giorgio, Marziano, Valentina, d'Andrea, Valeria, Trentini, Filippo, Ajelli, Marco, Poletti, Piero, Merler, Stefano

Importance Estimates of the rate of waning of vaccine effectiveness (VE) against COVID-19 are key to assess population levels of protection and future needs for booster doses to face the resurgence of epidemic waves.

Objective To quantify the progressive waning of VE associated with the Delta and Omicron variants of SARS-CoV-2 by number of received doses.

Data Sources PubMed and Web of Science were searched from the databases’ inception to October 19, 2022, as well as reference lists of eligible articles. Preprints were included.

Study Selection Selected studies for this systematic review and meta-analysis were original articles reporting estimates of VE over time against laboratory-confirmed SARS-CoV-2 infection and symptomatic disease.

Data Extraction and Synthesis Estimates of VE at different time points from vaccination were retrieved from original studies. A secondary data analysis was performed to project VE at any time from last dose administration, improving the comparability across different studies and between the 2 considered variants. Pooled estimates were obtained from random-effects meta-analysis.

Main Outcomes and Measures Outcomes were VE against laboratory-confirmed Omicron or Delta infection and symptomatic disease and half-life and waning rate associated with vaccine-induced protection.

Results A total of 799 original articles and 149 reviews published in peer-reviewed journals and 35 preprints were identified. Of these, 40 studies were included in the analysis. Pooled estimates of VE of a primary vaccination cycle against laboratory-confirmed Omicron infection and symptomatic disease were both lower than 20% at 6 months from last dose administration. Booster doses restored VE to levels comparable to those acquired soon after the administration of the primary cycle. However, 9 months after booster administration, VE against Omicron was lower than 30% against laboratory-confirmed infection and symptomatic disease. The half-life of VE against symptomatic infection was estimated to be 87 days (95% CI, 67-129 days) for Omicron compared with 316 days (95% CI, 240-470 days) for Delta. Similar waning rates of VE were found for different age segments of the population.

Conclusions and Relevance These findings suggest that the effectiveness of COVID-19 vaccines against laboratory-confirmed Omicron or Delta infection and symptomatic disease rapidly wanes over time after the primary vaccination cycle and booster dose. These results can inform the design of appropriate targets and timing for future vaccination programs.

Child & Adolescent Immunization Schedule

Author/s: 
Advisory Committee on Immunization Practices

COVID-19 Vaccination

ACIP recommends use of COVID-19 vaccines within the scope of the Emergency Use Authorization or Biologics License Application for the particular vaccine.  Interim ACIP recommendations for the use of COVID-19 vaccines can be found on the ACIP Vaccine Recommendations and Guidelines page.

Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Pfizer-BioNTech COVID-19 Vaccine

Author/s: 
Shimabukuro, T., Nair, N.

On December 11, 2020, the US Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the Pfizer-BioNTech coronavirus disease 2019 (COVID-19) vaccine, administered as 2 doses separated by 21 days.1 Shortly after, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation for its use.2 Following implementation of vaccination, reports of anaphylaxis after the first dose of the Pfizer-BioNTech COVID-19 vaccine emerged.3 Anaphylaxis is a life-threatening allergic reaction that occurs rarely after vaccination, with onset typically within minutes to hours.4

Notifications and reports of suspected severe allergic reactions and anaphylaxis following vaccination were captured in the Vaccine Adverse Event Reporting System (VAERS), the national passive surveillance (spontaneous reporting) system for adverse events after immunization.5 Physicians at the US Centers for Disease Control and Prevention (CDC) evaluated these reports and applied Brighton Collaboration case definition criteria6 to classify case reports as anaphylaxis or not anaphylaxis. Nonallergic adverse events, mostly vasovagal or anxiety-related, were excluded from the analysis. Anaphylaxis and nonanaphylaxis allergic reaction cases with symptom onset occurring later than the day after vaccination were also excluded because of the difficulty in clearly attributing allergic reactions with delayed onset after vaccination. Because the Moderna COVID-19 vaccine was only available beginning December 21, 2020, this article focuses on the Pfizer-BioNTech COVID-19 vaccine.

During December 14 to 23, 2020, after administration of a reported 1 893 360 first doses of Pfizer-BioNTech COVID-19 vaccine (1 177 527 in women, 648 327 in men, and 67 506 with sex of recipient not reported),3 CDC identified 21 case reports submitted to VAERS that met Brighton Collaboration case definition criteria for anaphylaxis (Table), corresponding to an estimated rate of 11.1 cases per million doses administered. Four patients (19%) were hospitalized (including 3 in intensive care), and 17 (81%) were treated in an emergency department; 20 (95%) are known to have been discharged home or had recovered at the time of the report to VAERS. No deaths from anaphylaxis were reported.

The Advisory Committee on Immunization Practices’ Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine — United States, December 2020

Author/s: 
Oliver, Sara E., Gargano, Julia W., Marin, Mona, Wallace, Megan, Curran, Kathryn G., Chamberland, Mary, McClung, Nancy, Campos-Outcalt, Doug, Morgan, Rebecca L., Mbaeyi, Sarah, Romero, Jose R., Talbot, H.K., Lee, Grace M., Bell, Beth P., Dooling, Kathleen

On December 11, 2020, the Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the Pfizer-BioNTech COVID-19 (BNT162b2) vaccine (Pfizer, Inc; Philadelphia, Pennsylvania), a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine encoding the prefusion spike glycoprotein of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (1). Vaccination with the Pfizer-BioNTech COVID-19 vaccine consists of 2 doses (30 μg, 0.3 mL each) administered intramuscularly, 3 weeks apart. On December 12, 2020, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation* for use of the Pfizer-BioNTech COVID-19 vaccine in persons aged ≥16 years for the prevention of COVID-19. To guide its deliberations regarding the vaccine, ACIP employed the Evidence to Recommendation (EtR) Framework,† using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach.§ The recommendation for the Pfizer-BioNTech COVID-19 vaccine should be implemented in conjunction with ACIP's interim recommendation for allocating initial supplies of COVID-19 vaccines (2). The ACIP recommendation for the use of the Pfizer-BioNTech COVID-19 vaccine under EUA is interim and will be updated as additional information becomes available.

Maintaining Safety with SARS-CoV-2 Vaccines

Author/s: 
Castells, Mariana C., Phillips, Elizabeth J.

To date, the development of mRNA vaccines for the prevention of infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a success story, with no serious concerns identified in the ongoing phase 3 clinical trials.1 Minor local side effects such as pain, redness, and swelling have been observed more frequently with the vaccines than with placebo. Systemic symptoms such as fever, fatigue, headache, and muscle and joint pain have also been somewhat more common with the vaccines than with placebo, and most have occurred during the first 24 to 48 hours after vaccination.1 In the phase 1–3 clinical trials of the Pfizer–BioNTech and Moderna mRNA vaccines, potential participants with a history of an allergic reaction to any component of the vaccine were excluded. The Pfizer–BioNTech studies also excluded participants with a history of severe allergy associated with any vaccine (see the protocols of the two trials, available with the full text of the articles at NEJM.org, for full exclusion criteria).1,2 Hypersensitivity adverse events were equally represented in the placebo (normal saline) and vaccine groups in both trials.1

REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19

Author/s: 
Weinreich, David M., Sivapalasingam, Sumathi, Norton, THomas,, Ali, Shazia, Gao, Haitao, Bhore, Rafia, Musser, Bret J., Soo, Yuhwen, Rofail, Diana, Im, Joseph, Perry, Christina, Pan, Cynthia, Hosain, Romana, Mahmood, Adnan, Davis, John D., Turner, Kenneth C., Hooper, Andrea T., Hamilton, Jennifer D., Baum, Alina, Kyratsous, Christos A., Kim, Yunji, Cook, Amanda, Kampman, Wendy, Kohli, Anita, Sachdeva. Yessica, Graber, Ximena, Kowal, Bari, DiCioccio, Thomas, Stahl, Neil, Lipsich, Leah, Braunstein, Ned, Herman, Gary, Yancopoulos, George D.

Background: Recent data suggest that complications and death from coronavirus disease 2019 (Covid-19) may be related to high viral loads.

Methods: In this ongoing, double-blind, phase 1-3 trial involving nonhospitalized patients with Covid-19, we investigated two fully human, neutralizing monoclonal antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, used in a combined cocktail (REGN-COV2) to reduce the risk of the emergence of treatment-resistant mutant virus. Patients were randomly assigned (1:1:1) to receive placebo, 2.4 g of REGN-COV2, or 8.0 g of REGN-COV2 and were prospectively characterized at baseline for endogenous immune response against SARS-CoV-2 (serum antibody-positive or serum antibody-negative). Key end points included the time-weighted average change from baseline in viral load from day 1 through day 7 and the percentage of patients with at least one Covid-19-related medically attended visit through day 29. Safety was assessed in all patients.

Results: Data from 275 patients are reported. The least-squares mean difference (combined REGN-COV2 dose groups vs. placebo group) in the time-weighted average change in viral load from day 1 through day 7 was -0.56 log10 copies per milliliter (95% confidence interval [CI], -1.02 to -0.11) among patients who were serum antibody-negative at baseline and -0.41 log10 copies per milliliter (95% CI, -0.71 to -0.10) in the overall trial population. In the overall trial population, 6% of the patients in the placebo group and 3% of the patients in the combined REGN-COV2 dose groups reported at least one medically attended visit; among patients who were serum antibody-negative at baseline, the corresponding percentages were 15% and 6% (difference, -9 percentage points; 95% CI, -29 to 11). The percentages of patients with hypersensitivity reactions, infusion-related reactions, and other adverse events were similar in the combined REGN-COV2 dose groups and the placebo group.

Conclusions: In this interim analysis, the REGN-COV2 antibody cocktail reduced viral load, with a greater effect in patients whose immune response had not yet been initiated or who had a high viral load at baseline. Safety outcomes were similar in the combined REGN-COV2 dose groups and the placebo group. 

SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates

Author/s: 
Gregory A., Ovsyannikova , Inna G., Kennedy, Richard B.

Understanding immune responses to severe acute respiratory syndrome coronavirus 2 is crucial to understanding disease pathogenesis and the usefulness of bridge therapies, such as hyperimmune globulin and convalescent human plasma, and to developing vaccines, antivirals, and monoclonal antibodies. A mere 11 months ago, the canvas we call COVID-19 was blank. Scientists around the world have worked collaboratively to fill in this blank canvas. In this Review, we discuss what is currently known about human humoral and cellular immune responses to severe acute respiratory syndrome coronavirus 2 and relate this knowledge to the COVID-19 vaccines currently in phase 3 clinical trials.

Subscribe to COVID-19 vaccine