An Evidence-Based Approach to Covid-19 Vaccination
- Read more about An Evidence-Based Approach to Covid-19 Vaccination
- Log in or register to post comments
No abstract available.
No abstract available.
Canada has had measles elimination status since 1998 but remains vulnerable to outbreaks
Increased measles activity globally raises the risk of travel-related cases in Canada, which can spread rapidly in underimmunized communities.
This parent-friendly schedule is recommended by the Advisory Committee on Immunization Practices (ACIP) and approved by the Centers for Disease Control and Prevention (CDC), American Academy of Pediatrics (AAP), and American Academy of Family Physicians (AAFP).
This parent-friendly schedule is recommended by the Advisory Committee on Immunization Practices (ACIP) and approved by the Centers for Disease Control and Prevention (CDC), American Academy of Pediatrics (AAP), and American Academy of Family Physicians (AAFP).
For the primary prevention of coronavirus disease 2019 (COVID-19), there are currently four different vaccines available in the USA. These are Pfizer (messenger RNA [mRNA]), Moderna (mRNA), Novavax (recombinant protein), and Jansen/Johnson & Johnson (adenoviral vector). All individuals should get vaccinated, and the Centers for Disease Control and Prevention (CDC) has provided comprehensive guidelines on recommended doses, their frequency by age group, and vaccine types, all discussed in detail in this article. Vaccines are a critical and cost-effective tool for preventing the disease. Prior to receiving a vaccine, patients should get adequate counseling regarding any potential adverse effects post vaccination. Appropriate safety precautions must be taken for those more likely to experience adverse consequences. Healthcare professionals should be aware of the symptoms, indicators, and treatment of any adverse event post-vaccination. We have provided a comprehensive review of the different characteristics of COVID-19 vaccines available in the United States, including their effectiveness against various variants, adverse effects, and precautions necessary for healthcare professionals and the general population. This article also briefly covers COVID-19 vaccines available worldwide, specifically their mode of action and effectiveness.
Importance: Influenza infection is associated with increased cardiovascular hospitalization and mortality. Our prior systematic review and meta-analysis hypothesized that influenza vaccination was associated with a lower risk of cardiovascular events.
Objective: To evaluate, via an updated meta-analysis, if seasonal influenza vaccination is associated with a lower risk of fatal and nonfatal cardiovascular events and assess whether the newest cardiovascular outcome trial results are consistent with prior findings.
Data sources: A previously published meta-analysis of randomized controlled trials (RCTs) and a large 2021 cardiovascular outcome trial.
Study selection: Studies with RCTs published between 2000 and 2021 that randomized participants to either influenza vaccine or placebo/control. Eligible participants were inpatients and outpatients recruited for international multicenter RCTs and randomized to receive either influenza vaccine or placebo/control.
Data extraction and synthesis: PRISMA guidelines were followed in the extraction of study details, and risk of bias was assessed using the Cochrane Collaboration tool. Trial quality was evaluated using Cochrane criteria. Data were analyzed January 2020 and December 2021.
Main outcomes and measures: Random-effects Mantel-Haenszel risk ratios (RRs) and 95% CIs were derived for a composite of major adverse cardiovascular events and cardiovascular mortality within 12 months of follow-up. Where available, analyses were stratified by patients with and without recent acute coronary syndrome (ACS) within 1 year of randomization.
Results: Six published RCTs comprising a total of 9001 patients were included (mean age, 65.5 years; 42.5% women; 52.3% with a cardiac history). Overall, influenza vaccine was associated with a lower risk of composite cardiovascular events (3.6% vs 5.4%; RR, 0.66; 95% CI, 0.53-0.83; P < .001). A treatment interaction was detected between patients with recent ACS (RR, 0.55; 95% CI, 0.41-0.75) and without recent ACS (RR, 1.00; 95% CI, 0.68-1.47) (P for interaction = .02). For cardiovascular mortality, a treatment interaction was also detected between patients with recent ACS (RR, 0.44; 95% CI, 0.23-0.85) and without recent ACS (RR, 1.45; 95% CI, 0.84-2.50) (P for interaction = .006), while 1.7% of vaccine recipients died of cardiovascular causes compared with 2.5% of placebo or control recipients (RR, 0.74; 95% CI, 0.42-1.30; P = .29).
Conclusions and relevance: In this study, receipt of influenza vaccination was associated with a 34% lower risk of major adverse cardiovascular events, and individuals with recent ACS had a 45% lower risk. Given influenza poses a threat to population health during the COVID-19 pandemic, it is integral to counsel high-risk patients on the cardiovascular benefits of influenza vaccination.
Not available.
Not available.
The Advisory Committee on Immunization Practices to the US Centers for Disease Control and Prevention provides annual recommendations for routine adult immunizations. Many recommendations consider patient factors such as age, medical conditions, and medications that increase an individual’s risk for infection with a vaccine-preventable disease. These factors, particularly those that lead to immunocompromise, may also alter the risk-benefit ratio for live vaccines, and/or lead to decreased vaccine immunogenicity and effectiveness. The provider may need to consider alternative vaccination strategies, including higher antigen dose vaccines, adjuvanted vaccines, avoidance of live vaccines, and careful timing of vaccination to optimize safety and effectiveness in immunocompromised populations. This thematic review discusses general principles regarding immunization of adults across the spectrum of immunocompromise, examines current guidelines and studies that support them, and outlines future research needs.
Two pneumococcal vaccines are currently licensed for use in adults in the United States: a 13-valent pneumococcal conjugate vaccine (PCV13 [Prevnar 13, Pfizer, Inc.]) and a 23-valent pneumococcal polysaccharide vaccine (PPSV23 [Pneumovax 23, Merck and Co., Inc.]). In 2014, the Advisory Committee on Immunization Practices (ACIP)* recommended routine use of PCV13 in series with PPSV23 for all adults aged ≥65 years based on demonstrated PCV13 safety and efficacy against PCV13-type pneumonia among adults aged ≥65 years (1). At that time, ACIP recognized that there would be a need to reevaluate this recommendation because it was anticipated that PCV13 use in children would continue to reduce disease burden among adults through reduced carriage and transmission of vaccine serotypes from vaccinated children (i.e., PCV13 indirect effects). On June 26, 2019, after having reviewed the evidence accrued during the preceding 3 years (https://www.cdc.gov/vaccines/acip/recs/grade/PCV13.html), ACIP voted to remove the recommendation for routine PCV13 use among adults aged ≥65 years and to recommend administration of PCV13 based on shared clinical decision-making for adults aged ≥65 years who do not have an immunocompromising condition,† cerebrospinal fluid (CSF) leak, or cochlear implant, and who have not previously received PCV13. ACIP recognized that some adults aged ≥65 years are potentially at increased risk for exposure to PCV13 serotypes, such as persons residing in nursing homes or other long-term care facilities and persons residing in settings with low pediatric PCV13 uptake or traveling to settings with no pediatric PCV13 program, and might attain higher than average benefit from PCV13 vaccination. When patients and vaccine providers§ engage in shared clinical decision-making for PCV13 use to determine whether PCV13 is right for a particular person, considerations might include both the person's risk for exposure to PCV13 serotypes and their risk for developing pneumococcal disease as a result of underlying medical conditions. All adults aged ≥65 years should continue to receive 1 dose of PPSV23. If the decision is made to administer PCV13, it should be given at least 1 year before PPSV23. ACIP continues to recommend PCV13 in series with PPSV23 for adults aged ≥19 years with an immunocompromising condition, CSF leak, or cochlear implant (2).