face masks

Personal protective effect of wearing surgical face masks in public spaces on self-reported respiratory symptoms in adults: pragmatic randomised superiority trial

Author/s: 
Runar Barstad Solberg, Atle Fretheim, Ingeborg Hess Elgersma, Mette Fagernes, Bjørn Gunnar Iversen, Lars G Hemkens, Christopher James Rose, Petter Elstrøm

Objective: To evaluate the personal protective effects of wearing versus not wearing surgical face masks in public spaces on self-reported respiratory symptoms over a 14 day period.

Design: Pragmatic randomised superiority trial.

Setting: Norway.

Participants: 4647 adults aged ≥18 years: 2371 were assigned to the intervention arm and 2276 to the control arm.

Interventions: Participants in the intervention arm were assigned to wear a surgical face mask in public spaces (eg, shopping centres, streets, public transport) over a 14 day period (mask wearing at home or work was not mentioned). Participants in the control arm were assigned to not wear a surgical face mask in public places.

Main outcome measures: The primary outcome was self-reported respiratory symptoms consistent with a respiratory infection. Secondary outcomes included self-reported and registered covid-19 infection.

Results: Between 10 February 2023 and 27 April 2023, 4647 participants were randomised of whom 4575 (2788 women (60.9%); mean age 51.0 (standard deviation 15.0) years) were included in the intention-to-treat analysis: 2313 (50.6%) in the intervention arm and 2262 (49.4%) in the control arm. 163 events (8.9%) of self-reported symptoms consistent with respiratory infection were reported in the intervention arm and 239 (12.2%) in the control arm. The marginal odds ratio was 0.71 (95% confidence interval (CI) 0.58 to 0.87; P=0.001) favouring the face mask intervention. The absolute risk difference was -3.2% (95% CI -5.2% to -1.3%; P<0.001). No statistically significant effect was found on self- reported (marginal odds ratio 1.07, 95% CI 0.58 to 1.98; P=0.82) or registered covid-19 infection (effect estimate and 95% CI not estimable owing to lack of events in the intervention arm).

Conclusion: Wearing a surgical face mask in public spaces over 14 days reduces the risk of self-reported symptoms consistent with a respiratory infection, compared with not wearing a surgical face mask.

Trial registration: ClinicalTrials.gov NCT05690516.

Masks and Face Coverings for the Lay Public : A Narrative Update

Author/s: 
Czypionka, Thomas, Greenhalgh, Trisha, Bassler, Dirk, Bryant, Manuel B.

Whether and when to mandate the wearing of facemasks in the community to prevent the spread of coronavirus disease 2019 remains controversial. Published literature across disciplines about the role of masks in mitigating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is summarized. Growing evidence that SARS-CoV-2 is airborne indicates that infection control interventions must go beyond contact and droplet measures (such as handwashing and cleaning surfaces) and attend to masking and ventilation. Observational evidence suggests that masks work mainly by source control (preventing infected persons from transmitting the virus to others), but laboratory studies of mask filtration properties suggest that they could also provide some protection to wearers (protective effect). Even small reductions in individual transmission could lead to substantial reductions in population spread. To date, only 1 randomized controlled trial has examined a community mask recommendation. This trial did not identify a significant protective effect and was not designed to evaluate source control. Filtration properties and comfort vary widely across mask types. Masks may cause discomfort and communication difficulties. However, there is no evidence that masks result in significant physiologic decompensation or that risk compensation and fomite transmission are associated with mask wearing. The psychological effects of masks are culturally shaped; they may include threats to autonomy, social relatedness, and competence. Evidence suggests that the potential benefits of wearing masks likely outweigh the potential harms when SARS-CoV-2 is spreading in a community. However, mask mandates involve a tradeoff with personal freedom, so such policies should be pursued only if the threat is substantial and mitigation of spread cannot be achieved through other means.

Physical Distancing, Face Masks, and Eye Protection to Prevent Person-To-Person Transmission of SARS-CoV-2 and COVID-19: A Systematic Review and Meta-Analysis

Author/s: 
Chu, D.K., Akl, E.A., Duda, S., Solo, K., Yaacoub, S., Schünemann, H.J., COVID-19 Systematic Urgent Review Group Effort (SURGE) study authors

Abstract

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 and is spread person-to-person through close contact. We aimed to investigate the effects of physical distance, face masks, and eye protection on virus transmission in health-care and non-health-care (eg, community) settings.

Methods: We did a systematic review and meta-analysis to investigate the optimum distance for avoiding person-to-person virus transmission and to assess the use of face masks and eye protection to prevent transmission of viruses. We obtained data for SARS-CoV-2 and the betacoronaviruses that cause severe acute respiratory syndrome, and Middle East respiratory syndrome from 21 standard WHO-specific and COVID-19-specific sources. We searched these data sources from database inception to May 3, 2020, with no restriction by language, for comparative studies and for contextual factors of acceptability, feasibility, resource use, and equity. We screened records, extracted data, and assessed risk of bias in duplicate. We did frequentist and Bayesian meta-analyses and random-effects meta-regressions. We rated the certainty of evidence according to Cochrane methods and the GRADE approach. This study is registered with PROSPERO, CRD42020177047.

Findings: Our search identified 172 observational studies across 16 countries and six continents, with no randomised controlled trials and 44 relevant comparative studies in health-care and non-health-care settings (n=25 697 patients). Transmission of viruses was lower with physical distancing of 1 m or more, compared with a distance of less than 1 m (n=10 736, pooled adjusted odds ratio [aOR] 0·18, 95% CI 0·09 to 0·38; risk difference [RD] -10·2%, 95% CI -11·5 to -7·5; moderate certainty); protection was increased as distance was lengthened (change in relative risk [RR] 2·02 per m; pinteraction=0·041; moderate certainty). Face mask use could result in a large reduction in risk of infection (n=2647; aOR 0·15, 95% CI 0·07 to 0·34, RD -14·3%, -15·9 to -10·7; low certainty), with stronger associations with N95 or similar respirators compared with disposable surgical masks or similar (eg, reusable 12-16-layer cotton masks; pinteraction=0·090; posterior probability >95%, low certainty). Eye protection also was associated with less infection (n=3713; aOR 0·22, 95% CI 0·12 to 0·39, RD -10·6%, 95% CI -12·5 to -7·7; low certainty). Unadjusted studies and subgroup and sensitivity analyses showed similar findings.

Interpretation: The findings of this systematic review and meta-analysis support physical distancing of 1 m or more and provide quantitative estimates for models and contact tracing to inform policy. Optimum use of face masks, respirators, and eye protection in public and health-care settings should be informed by these findings and contextual factors. Robust randomised trials are needed to better inform the evidence for these interventions, but this systematic appraisal of currently best available evidence might inform interim guidance.

Funding: World Health Organization.

Subscribe to face masks