RNA, Messenger

A Hitchhiker's Guide to Worldwide COVID-19 Vaccinations: A Detailed Review of Monovalent and Bivalent Vaccine Schedules, COVID-19 Vaccine Side Effects, and Effectiveness Against Omicron and Delta Variants

Author/s: 
Goyal, L., Zapata, M., Ajmera, K., Churasia, P., Pandit, R., Pandit, T.

For the primary prevention of coronavirus disease 2019 (COVID-19), there are currently four different vaccines available in the USA. These are Pfizer (messenger RNA [mRNA]), Moderna (mRNA), Novavax (recombinant protein), and Jansen/Johnson & Johnson (adenoviral vector). All individuals should get vaccinated, and the Centers for Disease Control and Prevention (CDC) has provided comprehensive guidelines on recommended doses, their frequency by age group, and vaccine types, all discussed in detail in this article. Vaccines are a critical and cost-effective tool for preventing the disease. Prior to receiving a vaccine, patients should get adequate counseling regarding any potential adverse effects post vaccination. Appropriate safety precautions must be taken for those more likely to experience adverse consequences. Healthcare professionals should be aware of the symptoms, indicators, and treatment of any adverse event post-vaccination. We have provided a comprehensive review of the different characteristics of COVID-19 vaccines available in the United States, including their effectiveness against various variants, adverse effects, and precautions necessary for healthcare professionals and the general population. This article also briefly covers COVID-19 vaccines available worldwide, specifically their mode of action and effectiveness.

Myocarditis after BNT162b2 mRNA Vaccine against Covid-19 in Israel

Author/s: 
Mevorach, D., Anis, E., Cedar, N., Bromberg, M., Haas, E. J., Nadir, E., Olsha-Castell, S., Arad, D., Hasin, T., Levi, N., Asleh, R., Amir, O., Meir, K., Cohen, D., Dichtiar, R., Novick, D., Hershkovitz, Y., Dagan, R., Leitersdorf, I., Ben-Ami, R., Miskin, I., Saliba, W., Muhsen, K., Levi, Y., Green, M. S., Beinan-Boker, L., Alroy-Preis, S.

Background: Approximately 5.1 million Israelis had been fully immunized against coronavirus disease 2019 (Covid-19) after receiving two doses of the BNT162b2 messenger RNA vaccine (Pfizer-BioNTech) by May 31, 2021. After early reports of myocarditis during adverse events monitoring, the Israeli Ministry of Health initiated active surveillance.

Methods: We retrospectively reviewed data obtained from December 20, 2020, to May 31, 2021, regarding all cases of myocarditis and categorized the information using the Brighton Collaboration definition. We analyzed the occurrence of myocarditis by computing the risk difference for the comparison of the incidence after the first and second vaccine doses (21 days apart); by calculating the standardized incidence ratio of the observed-to-expected incidence within 21 days after the first dose and 30 days after the second dose, independent of certainty of diagnosis; and by calculating the rate ratio 30 days after the second dose as compared with unvaccinated persons.

Results: Among 304 persons with symptoms of myocarditis, 21 had received an alternative diagnosis. Of the remaining 283 cases, 142 occurred after receipt of the BNT162b2 vaccine; of these cases, 136 diagnoses were definitive or probable. The clinical presentation was judged to be mild in 129 recipients (95%); one fulminant case was fatal. The overall risk difference between the first and second doses was 1.76 per 100,000 persons (95% confidence interval [CI], 1.33 to 2.19), with the largest difference among male recipients between the ages of 16 and 19 years (difference, 13.73 per 100,000 persons; 95% CI, 8.11 to 19.46). As compared with the expected incidence based on historical data, the standardized incidence ratio was 5.34 (95% CI, 4.48 to 6.40) and was highest after the second dose in male recipients between the ages of 16 and 19 years (13.60; 95% CI, 9.30 to 19.20). The rate ratio 30 days after the second vaccine dose in fully vaccinated recipients, as compared with unvaccinated persons, was 2.35 (95% CI, 1.10 to 5.02); the rate ratio was again highest in male recipients between the ages of 16 and 19 years (8.96; 95% CI, 4.50 to 17.83), with a ratio of 1 in 6637.

Conclusions: The incidence of myocarditis, although low, increased after the receipt of the BNT162b2 vaccine, particularly after the second dose among young male recipients. The clinical presentation of myocarditis after vaccination was usually mild.

Subscribe to RNA, Messenger