Kaplan-Meier Estimate

Aortic valve replacement versus conservative treatment in asymptomatic severe aortic stenosis: long-term follow-up of the AVATAR trial

Author/s: 
Marko Banovic, Svetozar Putnik, Bruno R Da Costa, Martin Penicka, Marek A Deja, Martin Kotrc

Background and aims: The question of when and how to treat truly asymptomatic patients with severe aortic stenosis (AS) and normal left ventricular (LV) systolic function is still subject to debate and ongoing research. Here, the results of extended follow-up of the AVATAR trial are reported (NCT02436655, clinical trials.gov).

Methods: The AVATAR trial randomly assigned patients with severe, asymptomatic AS and LV ejection fraction ≥50% to undergo either early surgical aortic valve replacement (AVR) or conservative treatment with watchful waiting strategy. All patients had negative exercise stress testing. The primary hypothesis was that early AVR will reduce a primary composite endpoint comprising all-cause death, acute myocardial infarction, stroke or unplanned hospitalization for heart failure (HF), as compared to conservative treatment strategy.

Results: A total of 157 low-risk patients (mean age 67 years, 57% men, mean Society of Thoracic Surgeons score 1.7%) were randomly allocated to either early AVR group (n=78) or conservative treatment group (n=79). In an intention-to-treat analysis, after a median follow-up of 63 months, the primary composite endpoint outcome event occurred in 18/78 patients (23.1%) in the early surgery group and in 37/79 patients (46.8%) in the conservative treatment group (hazard ratio [HR] early surgery vs. conservative treatment 0.42; 95% confidence interval [CI] 0.24-0.73, p=0.002). The Kaplan-Meier estimates for individual endpoints of all-cause death and HF hospitalization were significantly lower in the early surgery compared with the conservative group (HR 0.44; 95% CI 0.23-0.85, p=0.012 for all-cause death, and HR 0.21; 95% CI 0.06-0.73, p=0.007 for HF hospitalizations).

Conclusions: The extended follow-up of the AVATAR trial demonstrates better clinical outcomes with early surgical AVR in truly asymptomatic patients with severe AS and normal LV ejection fraction compared with patients treated with conservative management on watchful waiting.

Long-Term Oxygen Therapy for 24 or 15 Hours per Day in Severe Hypoxemia

Author/s: 
Magnus Ekström, Anders Andersson, Savvas Papadopoulos, Taivo Kipper, Bo Pedersen, Ozren Kricka

Background: Long-term oxygen supplementation for at least 15 hours per day prolongs survival among patients with severe hypoxemia. On the basis of a nonrandomized comparison, long-term oxygen therapy has been recommended to be used for 24 hours per day, a more burdensome regimen.

Methods: To test the hypothesis that long-term oxygen therapy used for 24 hours per day does not result in a lower risk of hospitalization or death at 1 year than therapy for 15 hours per day, we conducted a multicenter, registry-based, randomized, controlled trial involving patients who were starting oxygen therapy for chronic, severe hypoxemia at rest. The patients were randomly assigned to receive long-term oxygen therapy for 24 or 15 hours per day. The primary outcome, assessed in a time-to-event analysis, was a composite of hospitalization or death from any cause within 1 year. Secondary outcomes included the individual components of the primary outcome assessed at 3 and 12 months.

Results: Between May 18, 2018, and April 4, 2022, a total of 241 patients were randomly assigned to receive long-term oxygen therapy for 24 hours per day (117 patients) or 15 hours per day (124 patients). No patient was lost to follow-up. At 12 months, the median patient-reported daily duration of oxygen therapy was 24.0 hours (interquartile range, 21.0 to 24.0) in the 24-hour group and 15.0 hours (interquartile range, 15.0 to 16.0) in the 15-hour group. The risk of hospitalization or death within 1 year in the 24-hour group was not lower than that in the 15-hour group (mean rate, 124.7 and 124.5 events per 100 person-years, respectively; hazard ratio, 0.99; 95% confidence interval [CI], 0.72 to 1.36; 90% CI, 0.76 to 1.29; P = 0.007 for nonsuperiority). The groups did not differ substantially in the incidence of hospitalization for any cause, death from any cause, or adverse events.

Conclusions: Among patients with severe hypoxemia, long-term oxygen therapy used for 24 hours per day did not result in a lower risk of hospitalization or death within 1 year than therapy for 15 hours per day. (Funded by the Crafoord Foundation and others; REDOX ClinicalTrials.gov number, NCT03441204.).

Extended follow-up of local steroid injection for carpal tunnel syndrome: A randomized clinical trial

Author/s: 
Hofer, M., Ranstam, J., Atroshi, I.

Importance Local steroid injection is commonly used in treating patients with idiopathic carpal tunnel syndrome, but evidence regarding long-term efficacy is lacking.

Objective To assess the long-term treatment effects of local steroid injection for carpal tunnel syndrome.

Design, Setting, and Participants This exploratory 5-year extended follow-up of a double-blind, placebo-controlled randomized clinical trial was conducted from November 2008 to March 2012 at a university hospital orthopedic department. Participants included patients aged 22 to 69 years with primary idiopathic carpal tunnel syndrome and no prior treatment with local steroid injections. Data were analyzed from May 2018 to August 2018.

Interventions Patients were randomized to injection of 80 mg methylprednisolone, 40 mg methylprednisolone, or saline.

Main Outcomes and Measures The coprimary outcomes were the symptom severity score and rate of subsequent carpal tunnel release surgery on the study hand at 5 years. Secondary outcomes were time from injection to surgical treatment, SF-36 bodily pain score, and score on the 11-item disabilities of the arm, shoulder, and hand scale.

Results A total of 111 participants (mean [SD] age at follow-up, 52.9 [11.6] years; 81 [73.0%] women and 30 [27.0%] men) were randomized, with 37 in the 80 mg methylprednisolone group, 37 in the 40 mg methylprednisolone group, and 37 in the saline placebo group. Complete 5-year follow-up data were obtained from all 111 participants with no dropouts (100% follow-up). At baseline, mean (SD) symptom severity scores were 2.93 (0.85) in the 80 mg methylprednisolone group, 3.13 (0.70) in the 40 mg methylprednisolone group, and 3.18 (0.75) in the placebo group, and at the 5-year follow up, mean (SD) symptom severity scores were 1.51 (0.66) in the 80 mg methylprednisolone group, 1.59 (0.63) in the 40 mg methylprednisolone group, and 1.67 (0.74) in the placebo group. Compared with placebo, there was no significant difference in mean change in symptom severity score from baseline to 5 years for the 80 mg methylprednisolone group (0.14 [95%CI, −0.17 to 0.45]) or the 40 mg methylprednisolone group (0.12 [95%CI, −0.19 to 0.43]). After injection, subsequent surgical treatment on the study hand was performed in 31 participants (83.8%) in the 80 mg methylprednisolone group, 34 participants (91.9%) in the 40 mg methylprednisolone group, and 36 participants (97.3%) in the placebo group; the number of participants who underwent surgical treatment between the 1-year and 5-year follow-ups was 4 participants (10.8%) in the 80 mg methylprednisolone group, 4 participants (10.8%) in the 40 mg methylprednisolone group, and 2 participants (5.4%) in the placebo group. All surgical procedures were conducted while participants and investigators were blinded to type of injection received. The mean (SD) time from injection to surgery was 180 (121) days in the 80 mg methylprednisolone group, 185 (125) days in the 40 mg methylprednisolone group, and 121 (88) days in the placebo group. Kaplan-Meier survival curves showed statistically significant difference in time to surgical treatment (log-rank test: 80 mg methylprednisolone vs placebo, P = .002 ; 40 mg methylprednisolone vs placebo, P = .02; methylprednisolone 80 mg vs 40 mg, P = .37).

Conclusions and Relevance These findings suggest that in idiopathic carpal tunnel syndrome, local methylprednisolone injection resulted in statistically significant reduction in surgery rates and delay in need for surgery.

Trial Registration ClinicalTrials.gov Identifiers: NCT00806871 and NCT02652390

Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19

Author/s: 
Taquet, M., Dercon, Q., Luciano, S., Geddes, J. R., Husain, M., Harrison, P. J.

Background
Long-COVID refers to a variety of symptoms affecting different organs reported by people following Coronavirus Disease 2019 (COVID-19) infection. To date, there have been no robust estimates of the incidence and co-occurrence of long-COVID features, their relationship to age, sex, or severity of infection, and the extent to which they are specific to COVID-19. The aim of this study is to address these issues.

Methods and findings
We conducted a retrospective cohort study based on linked electronic health records (EHRs) data from 81 million patients including 273,618 COVID-19 survivors. The incidence and co-occurrence within 6 months and in the 3 to 6 months after COVID-19 diagnosis were calculated for 9 core features of long-COVID (breathing difficulties/breathlessness, fatigue/malaise, chest/throat pain, headache, abdominal symptoms, myalgia, other pain, cognitive symptoms, and anxiety/depression). Their co-occurrence network was also analyzed. Comparison with a propensity score–matched cohort of patients diagnosed with influenza during the same time period was achieved using Kaplan–Meier analysis and the Cox proportional hazard model. The incidence of atopic dermatitis was used as a negative control.

Among COVID-19 survivors (mean [SD] age: 46.3 [19.8], 55.6% female), 57.00% had one or more long-COVID feature recorded during the whole 6-month period (i.e., including the acute phase), and 36.55% between 3 and 6 months. The incidence of each feature was: abnormal breathing (18.71% in the 1- to 180-day period; 7.94% in the 90- to180-day period), fatigue/malaise (12.82%; 5.87%), chest/throat pain (12.60%; 5.71%), headache (8.67%; 4.63%), other pain (11.60%; 7.19%), abdominal symptoms (15.58%; 8.29%), myalgia (3.24%; 1.54%), cognitive symptoms (7.88%; 3.95%), and anxiety/depression (22.82%; 15.49%). All 9 features were more frequently reported after COVID-19 than after influenza (with an overall excess incidence of 16.60% and hazard ratios between 1.44 and 2.04, all p < 0.001), co-occurred more commonly, and formed a more interconnected network. Significant differences in incidence and co-occurrence were associated with sex, age, and illness severity. Besides the limitations inherent to EHR data, limitations of this study include that (i) the findings do not generalize to patients who have had COVID-19 but were not diagnosed, nor to patients who do not seek or receive medical attention when experiencing symptoms of long-COVID; (ii) the findings say nothing about the persistence of the clinical features; and (iii) the difference between cohorts might be affected by one cohort seeking or receiving more medical attention for their symptoms.

Conclusions
Long-COVID clinical features occurred and co-occurred frequently and showed some specificity to COVID-19, though they were also observed after influenza. Different long-COVID clinical profiles were observed based on demographics and illness severity.

Author summary
Why was this study done?
Long-COVID has been described in recent studies. But we do not know the risk of developing features of this condition and how it is affected by factors such as age, sex, or severity of infection.
We do not know if the risk of having features of long-COVID is more likely after Coronavirus Disease 2019 (COVID-19) than after influenza.
We do not know about the extent to which different features of long-COVID co-occur.
What did the researchers do and find?
This research used data from electronic health records of 273,618 patients diagnosed with COVID-19 and estimated the risk of having long-COVID features in the 6 months after a diagnosis of COVID-19. It compared the risk of long-COVID features in different groups within the population and also compared the risk to that after influenza.
The research found that over 1 in 3 patients had one or more features of long-COVID recorded between 3 and 6 months after a diagnosis of COVID-19. This was significantly higher than after influenza.
For 2 in 5 of the patients who had long-COVID features in the 3- to 6-month period, they had no record of any such feature in the previous 3 months.
The risk of long-COVID features was higher in patients who had more severe COVID-19 illness, and slightly higher among females and young adults. White and non-white patients were equally affected.
What do these findings mean?
Knowing the risk of long-COVID features helps in planning the relevant healthcare service provision.
The fact that the risk is higher after COVID-19 than after influenza suggests that their origin might, in part, directly involve infection with SARS-CoV-2 and is not just a general consequence of viral infection. This might help in developing effective treatments against long-COVID.
The findings in the subgroups, and the fact that the majority of patients who have features of long-COVID in the 3- to 6-month period already had symptoms in the first 3 months, may help in identifying those at greatest risk.

Baloxavir Marboxil for Uncomplicated Influenza in Adults and Adolescents

Author/s: 
Hayden, Frederick G., Sugaya, Norio, Hirotsu, Nobuo, Lee, Nelson, de Jong, Menno D., Hurt, Aeron C., Ishida, Tadashi, Sekino, Hisakuni, Yamada, Kota, Portsmouth, Simon, Kawaguchi, Keiko, Shishido, Takao, Arai, Masatsugu, Tsuchiya, Kenji, Uehara, Takeki, Watanabe, Akira, Baloxavir Marboxil Investigators Group

BACKGROUND:

Baloxavir marboxil is a selective inhibitor of influenza cap-dependent endonuclease. It has shown therapeutic activity in preclinical models of influenza A and B virus infections, including strains resistant to current antiviral agents.

METHODS:

We conducted two randomized, double-blind, controlled trials involving otherwise healthy outpatients with acute uncomplicated influenza. After a dose-ranging (10 to 40 mg) placebo-controlled trial, we undertook a placebo- and oseltamivir-controlled trial of single, weight-based doses of baloxavir (40 or 80 mg) in patients 12 to 64 years of age during the 2016-2017 season. The dose of oseltamivir was 75 mg twice daily for 5 days. The primary efficacy end point was the time to alleviation of influenza symptoms in the intention-to-treat infected population.

RESULTS:

In the phase 2 trial, the median time to alleviation of influenza symptoms was 23.4 to 28.2 hours shorter in the baloxavir groups than in the placebo group (P<0.05). In the phase 3 trial, the intention-to-treat infected population included 1064 patients; 84.8 to 88.1% of patients in each group had influenza A(H3N2) infection. The median time to alleviation of symptoms was 53.7 hours (95% confidence interval [CI], 49.5 to 58.5) with baloxavir, as compared with 80.2 hours (95% CI, 72.6 to 87.1) with placebo (P<0.001). The time to alleviation of symptoms was similar with baloxavir and oseltamivir. Baloxavir was associated with greater reductions in viral load 1 day after initiation of the regimen than placebo or oseltamivir. Adverse events were reported in 20.7% of baloxavir recipients, 24.6% of placebo recipients, and 24.8% of oseltamivir recipients. The emergence of polymerase acidic protein variants with I38T/M/F substitutions conferring reduced susceptibility to baloxavir occurred in 2.2% and 9.7% of baloxavir recipients in the phase 2 trial and phase 3 trial, respectively.

CONCLUSIONS:

Single-dose baloxavir was without evident safety concerns, was superior to placebo in alleviating influenza symptoms, and was superior to both oseltamivir and placebo in reducing the viral load 1 day after initiation of the trial regimen in patients with uncomplicated influenza. Evidence for the development of decreased susceptibility to baloxavir after treatment was also observed. (Funded by Shionogi; JapicCTI number, 153090, and CAPSTONE-1 ClinicalTrials.gov number, NCT02954354 .).

Subscribe to Kaplan-Meier Estimate