cholesterol, LDL

Evaluating the Association Between Low-Density Lipoprotein Cholesterol Reduction and Relative and Absolute Effects of Statin Treatment

Author/s: 
Byrne, P., Demasi, M., Jones, M.

Importance The association between statin-induced reduction in low-density lipoprotein cholesterol (LDL-C) levels and the absolute risk reduction of individual, rather than composite, outcomes, such as all-cause mortality, myocardial infarction, or stroke, is unclear.

Objective To assess the association between absolute reductions in LDL-C levels with treatment with statin therapy and all-cause mortality, myocardial infarction, and stroke to facilitate shared decision-making between clinicians and patients and inform clinical guidelines and policy.

Data Sources PubMed and Embase were searched to identify eligible trials from January 1987 to June 2021.

Study Selection Large randomized clinical trials that examined the effectiveness of statins in reducing total mortality and cardiovascular outcomes with a planned duration of 2 or more years and that reported absolute changes in LDL-C levels. Interventions were treatment with statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) vs placebo or usual care. Participants were men and women older than 18 years.

Data Extraction and Synthesis Three independent reviewers extracted data and/or assessed the methodological quality and certainty of the evidence using the risk of bias 2 tool and Grading of Recommendations, Assessment, Development and Evaluation. Any differences in opinion were resolved by consensus. Meta-analyses and a meta-regression were undertaken.

Main Outcomes and Measures Primary outcome: all-cause mortality. Secondary outcomes: myocardial infarction, stroke.

Findings Twenty-one trials were included in the analysis. Meta-analyses showed reductions in the absolute risk of 0.8% (95% CI, 0.4%-1.2%) for all-cause mortality, 1.3% (95% CI, 0.9%-1.7%) for myocardial infarction, and 0.4% (95% CI, 0.2%-0.6%) for stroke in those randomized to treatment with statins, with associated relative risk reductions of 9% (95% CI, 5%-14%), 29% (95% CI, 22%-34%), and 14% (95% CI, 5%-22%) respectively. A meta-regression exploring the potential mediating association of the magnitude of statin-induced LDL-C reduction with outcomes was inconclusive.

Conclusions and Relevance The results of this meta-analysis suggest that the absolute risk reductions of treatment with statins in terms of all-cause mortality, myocardial infarction, and stroke are modest compared with the relative risk reductions, and the presence of significant heterogeneity reduces the certainty of the evidence. A conclusive association between absolute reductions in LDL-C levels and individual clinical outcomes was not established, and these findings underscore the importance of discussing absolute risk reductions when making informed clinical decisions with individual patients.

Evaluating the Association Between Low-Density Lipoprotein Cholesterol Reduction and Relative and Absolute Effects of Statin Treatment: A Systematic Review and Meta-analysis

Author/s: 
Byrne, P., Demasi, M., Jones, M., Smith, S. M., O'Brien, K. K., DuBroff, R.

Importance: The association between statin-induced reduction in low-density lipoprotein cholesterol (LDL-C) levels and the absolute risk reduction of individual, rather than composite, outcomes, such as all-cause mortality, myocardial infarction, or stroke, is unclear.

Objective: To assess the association between absolute reductions in LDL-C levels with treatment with statin therapy and all-cause mortality, myocardial infarction, and stroke to facilitate shared decision-making between clinicians and patients and inform clinical guidelines and policy.

Data sources: PubMed and Embase were searched to identify eligible trials from January 1987 to June 2021.

Study selection: Large randomized clinical trials that examined the effectiveness of statins in reducing total mortality and cardiovascular outcomes with a planned duration of 2 or more years and that reported absolute changes in LDL-C levels. Interventions were treatment with statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) vs placebo or usual care. Participants were men and women older than 18 years.

Data extraction and synthesis: Three independent reviewers extracted data and/or assessed the methodological quality and certainty of the evidence using the risk of bias 2 tool and Grading of Recommendations, Assessment, Development and Evaluation. Any differences in opinion were resolved by consensus. Meta-analyses and a meta-regression were undertaken.

Main outcomes and measures: Primary outcome: all-cause mortality. Secondary outcomes: myocardial infarction, stroke.

Findings: Twenty-one trials were included in the analysis. Meta-analyses showed reductions in the absolute risk of 0.8% (95% CI, 0.4%-1.2%) for all-cause mortality, 1.3% (95% CI, 0.9%-1.7%) for myocardial infarction, and 0.4% (95% CI, 0.2%-0.6%) for stroke in those randomized to treatment with statins, with associated relative risk reductions of 9% (95% CI, 5%-14%), 29% (95% CI, 22%-34%), and 14% (95% CI, 5%-22%) respectively. A meta-regression exploring the potential mediating association of the magnitude of statin-induced LDL-C reduction with outcomes was inconclusive.

Conclusions and relevance: The results of this meta-analysis suggest that the absolute risk reductions of treatment with statins in terms of all-cause mortality, myocardial infarction, and stroke are modest compared with the relative risk reductions, and the presence of significant heterogeneity reduces the certainty of the evidence. A conclusive association between absolute reductions in LDL-C levels and individual clinical outcomes was not established, and these findings underscore the importance of discussing absolute risk reductions when making informed clinical decisions with individual patients.

Efficacy and safety of lowering LDL cholesterol in older patients: a systematic review and meta-analysis of randomised controlled trials

Author/s: 
Gencer, Baris, Marston, Nicholas A., Im, KyungAh, Cannon, Christopher P., Sever, Peter, Keech, Anthony, Braunwald, Eugene, Giugliano, Robert P., Sabatine, Marc S.

Background: The clinical benefit of LDL cholesterol lowering treatment in older patients remains debated. We aimed to summarise the evidence of LDL cholesterol lowering therapies in older patients.

Methods: In this systematic review and meta-analysis, we searched MEDLINE and Embase for articles published between March 1, 2015, and Aug 14, 2020, without any language restrictions. We included randomised controlled trials of cardiovascular outcomes of an LDL cholesterol-lowering drug recommended by the 2018 American College of Cardiology and American Heart Association guidelines, with a median follow-up of at least 2 years and data on older patients (aged ≥75 years). We excluded trials that exclusively enrolled participants with heart failure or on dialysis because guidelines do not recommend lipid-lowering therapy in such patients who do not have another indication. We extracted data for older patients using a standardised data form for aggregated study-level data. We meta-analysed the risk ratio (RR) for major vascular events (a composite of cardiovascular death, myocardial infarction or other acute coronary syndrome, stroke, or coronary revascularisation) per 1 mmol/L reduction in LDL cholesterol.

Findings: Data from six articles were included in the systematic review and meta-analysis, which included 24 trials from the Cholesterol Treatment Trialists' Collaboration meta-analysis plus five individual trials. Among 244 090 patients from 29 trials, 21 492 (8·8%) were aged at least 75 years, of whom 11 750 (54·7%) were from statin trials, 6209 (28·9%) from ezetimibe trials, and 3533 (16·4%) from PCSK9 inhibitor trials. Median follow-up ranged from 2·2 years to 6·0 years. LDL cholesterol lowering significantly reduced the risk of major vascular events (n=3519) in older patients by 26% per 1 mmol/L reduction in LDL cholesterol (RR 0·74 [95% CI 0·61-0·89]; p=0·0019), with no statistically significant difference with the risk reduction in patients younger than 75 years (0·85 [0·78-0·92]; pinteraction=0·37). Among older patients, RRs were not statistically different for statin (0·82 [0·73-0·91]) and non-statin treatment (0·67 [0·47-0·95]; pinteraction=0·64). The benefit of LDL cholesterol lowering in older patients was observed for each component of the composite, including cardiovascular death (0·85 [0·74-0·98]), myocardial infarction (0·80 [0·71-0·90]), stroke (0·73 [0·61-0·87]), and coronary revascularisation (0·80 [0·66-0·96]).

Interpretation: In patients aged 75 years and older, lipid lowering was as effective in reducing cardiovascular events as it was in patients younger than 75 years. These results should strengthen guideline recommendations for the use of lipid-lowering therapies, including non-statin treatment, in older patients.

Reduction in Saturated Fat Intake for Cardiovascular Disease

Author/s: 
Hopper, L., Martin, N., Jimoh, O.F., Kirk, C., Foster, E., Abdelhamid, A.

Abstract

Background: Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally, it is unclear whether the energy from saturated fats eliminated from the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein.

Objectives: To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA), monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials.

Search methods: We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and Embase (Ovid) on 15 October 2019, and searched Clinicaltrials.gov and WHO International Clinical Trials Registry Platform (ICTRP) on 17 October 2019.

Selection criteria: Included trials fulfilled the following criteria: 1) randomised; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) compared with higher saturated fat intake or usual diet; 4) not multifactorial; 5) in adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 6) intervention duration at least 24 months; 7) mortality or cardiovascular morbidity data available.

Data collection and analysis: Two review authors independently assessed inclusion, extracted study data and assessed risk of bias. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses, funnel plots and GRADE assessment.

Main results: We included 15 randomised controlled trials (RCTs) (16 comparisons, ~59,000 participants), that used a variety of interventions from providing all food to advice on reducing saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of combined cardiovascular events by 21% (risk ratio (RR) 0.79; 95% confidence interval (CI) 0.66 to 0.93, 11 trials, 53,300 participants of whom 8% had a cardiovascular event, I² = 65%, GRADE moderate-quality evidence). Meta-regression suggested that greater reductions in saturated fat (reflected in greater reductions in serum cholesterol) resulted in greater reductions in risk of CVD events, explaining most heterogeneity between trials. The number needed to treat for an additional beneficial outcome (NNTB) was 56 in primary prevention trials, so 56 people need to reduce their saturated fat intake for ~four years for one person to avoid experiencing a CVD event. In secondary prevention trials, the NNTB was 32. Subgrouping did not suggest significant differences between replacement of saturated fat calories with polyunsaturated fat or carbohydrate, and data on replacement with monounsaturated fat and protein was very limited. We found little or no effect of reducing saturated fat on all-cause mortality (RR 0.96; 95% CI 0.90 to 1.03; 11 trials, 55,858 participants) or cardiovascular mortality (RR 0.95; 95% CI 0.80 to 1.12, 10 trials, 53,421 participants), both with GRADE moderate-quality evidence. There was little or no effect of reducing saturated fats on non-fatal myocardial infarction (RR 0.97, 95% CI 0.87 to 1.07) or CHD mortality (RR 0.97, 95% CI 0.82 to 1.16, both low-quality evidence), but effects on total (fatal or non-fatal) myocardial infarction, stroke and CHD events (fatal or non-fatal) were all unclear as the evidence was of very low quality. There was little or no effect on cancer mortality, cancer diagnoses, diabetes diagnosis, HDL cholesterol, serum triglycerides or blood pressure, and small reductions in weight, serum total cholesterol, LDL cholesterol and BMI. There was no evidence of harmful effects of reducing saturated fat intakes.

Authors' conclusions: The findings of this updated review suggest that reducing saturated fat intake for at least two years causes a potentially important reduction in combined cardiovascular events. Replacing the energy from saturated fat with polyunsaturated fat or carbohydrate appear to be useful strategies, while effects of replacement with monounsaturated fat are unclear. The reduction in combined cardiovascular events resulting from reducing saturated fat did not alter by study duration, sex or baseline level of cardiovascular risk, but greater reduction in saturated fat caused greater reductions in cardiovascular events.

Trial registration: ClinicalTrials.gov NCT00000611 NCT02062424 NCT00692536 NCT01954472NCT01005498 NCT01634841 NCT03354377.

Association of Nonfasting vs Fasting Lipid Levels With Risk of Major Coronary Events in the Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm

Author/s: 
Mora, Samia, Chang, C. Lan, Moorthy, M. Vinayaga, Sever, Peter S.

IMPORTANCE:

Recent guidelines have recommended nonfasting for routine testing of lipid levels based on comparisons of nonfasting and fasting populations. However, no previous study has examined the association of cardiovascular outcomes with fasting vs nonfasting lipid levels measured in the same individuals.

OBJECTIVE:

To compare the association of nonfasting and fasting lipid levels with prospectively ascertained coronary and vascular outcomes and to evaluate whether a strategy of using nonfasting instead of fasting lipid level measurement would result in misclassification of risk for individuals undergoing evaluation for initiation of statin therapy.

DESIGN, SETTING, AND PARTICIPANTS:

This post hoc prospective follow-up of a randomized clinical trial included 8270 of 10 305 participants from the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ASCOT-LLA) with nonfasting and fasting lipid levels measured 4 weeks apart (including 6855 participants with no prior vascular disease) (median follow-up, 3.3 years; interquartile range, 2.8-3.6 years). Data were collected from February 1, 1998, to December 31, 2002, and analyzed from February 1, 2016, to November 30, 2018. Multivariable Cox models, adjusted for cardiovascular risk factors, were calculated for 40-mg/dL (1-mmol/L) higher values of nonfasting and fasting lipids.

MAIN OUTCOMES AND MEASURES:

The trial's primary end point consisted of major coronary events (nonfatal myocardial infarction [MI] and fatal coronary heart disease [212 events]). Secondary analyses examined atherosclerotic cardiovascular disease (ASCVD) events (including MI, stroke, and ASCVD death [351 events]).

RESULTS:

Among the 8270 participants (82.1% male; mean [SD] age, 63.4 [8.5] years), nonfasting samples had modestly higher triglyceride levels and similar cholesterol levels compared to fasting samples. Associations of nonfasting lipid levels with coronary events were similar to those for fasting lipid levels. For example, adjusted hazard ratios (HRs) per 40-mg/dL of low-density lipoprotein cholesterol were 1.32 (95% CI, 1.08-1.61; P = .007) for nonfasting levels and 1.28 (95% CI, 1.07-1.55; P = .008) for fasting levels. For the primary prevention group, adjusted HRs were 1.42 (95% CI, 1.13-1.78; P = .003) for nonfasting levels and 1.37 (95% CI, 1.11-1.69; P = .003) for fasting levels. Results were consistent by randomized treatment arm (atorvastatin calcium, 10 mg/d, or placebo) and similar for ASCVD events. Concordance of fasting and nonfasting lipid levels for classifying participants into appropriate ASCVD risk categories was high (94.8%).

CONCLUSIONS AND RELEVANCE:

Measurement of nonfasting and fasting lipid levels yields similar results in the same individuals for association with incident coronary and ASCVD events. These results suggest that routine measurement of nonfasting lipid levels may help facilitate ASCVD risk screening and treatment, including consideration of when to initiate statin therapy.

2018 Cholesterol Clinical Practice Guidelines: Synopsis of the 2018 American Heart Association/American College of Cardiology/Multisociety Cholesterol Guideline

Author/s: 
Grundy, Scott M, Stone, Neil J., Guideline Writing Committee for the 2018 Cholesterol Guidelines

Description:

In November 2018, the American Heart Association and American College of Cardiology (AHA/ACC) released a new clinical practice guideline on cholesterol management. It was accompanied by a risk assessment report on primary prevention of atherosclerotic cardiovascular disease (ASCVD).

Methods:

A panel of experts free of recent and relevant industry-related conflicts was chosen to carry out systematic reviews and meta-analyses of randomized controlled trials (RCTs) that examined cardiovascular outcomes. High-quality observational studies were used for estimation of ASCVD risk. An independent panel systematically reviewed RCT evidence about the benefits and risks of adding nonstatin medications to statin therapy compared with receiving statin therapy alone in persons who have or are at high risk for ASCVD.

Recommendation:

The guideline endorses a heart-healthy lifestyle beginning in childhood to reduce lifetime risk for ASCVD. It contains several new features compared with the 2013 guideline. For secondary prevention, patients at very high risk may be candidates for adding nonstatin medications (ezetimibe or proprotein convertase subtilisin/kexin type 9 [PCSK9] inhibitors) to statin therapy. In primary prevention, a clinician–patient risk discussion is still strongly recommended before a decision is made about statin treatment. The AHA/ACC risk calculator first triages patients into 4 risk categories. Those at intermediate risk deserve a focused clinician–patient discussion before initiation of statin therapy. Among intermediate-risk patients, identification of risk-enhancing factors and coronary artery calcium testing can assist in the decision to use a statin. Compared with the 2013 guideline, the new guideline gives more attention to percentage reduction in low-density lipoprotein cholesterol as a treatment goal and to long-term monitoring of therapeutic efficacy. To simplify monitoring, nonfasting lipid measurements are allowed.

Management of Blood Cholesterol

Author/s: 
Alenghat, Francis J., Davis, Andrew M.

Pharmacologically lowering low-density lipoprotein cholesterol (LDL-C) consistently reduces ASCVD events (myocardial infarction, stroke, and cardiovascular death), and the principle that lower LDL-C is better was reaffirmed by trials that added ezetimibe or proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors to statin therapy. The 2013 guideline removed specific LDL-C treatment targets, but high-quality trials since offered the opportunity to reintroduce such goals based on risk gradations.

Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials

Author/s: 
Cholesterol Treatment Trialists' Collaboration

BACKGROUND:

Statin therapy has been shown to reduce major vascular events and vascular mortality in a wide range of individuals, but there is uncertainty about its efficacy and safetyamong older people. We undertook a meta-analysis of data from all large statin trials to compare the effects of statin therapy at different ages.

METHODS:

In this meta-analysis, randomised trials of statin therapy were eligible if they aimed to recruit at least 1000 participants with a scheduled treatment duration of at least 2 years. We analysed individual participant data from 22 trials (n=134 537) and detailed summary data from one trial (n=12 705) of statin therapy versus control, plus individual participant data from five trials of more intensive versus less intensive statin therapy (n=39 612). We subdivided participants into six age groups (55 years or younger, 56-60 years, 61-65 years, 66-70 years, 71-75 years, and older than 75 years). We estimated effects on major vascular events (ie, major coronary events, strokes, and coronary revascularisations), cause-specific mortality, and cancer incidence as the rate ratio (RR) per 1·0 mmol/L reduction in LDL cholesterol. We compared proportional risk reductions in different age subgroups by use of standard χ2 tests for heterogeneity when there were two groups, or trend when there were more than two groups.

FINDINGS:

14 483 (8%) of 186 854 participants in the 28 trials were older than 75 years at randomisation, and the median follow-up duration was 4·9 years. Overall, statin therapy or a more intensive statin regimen produced a 21% (RR 0·79, 95% CI 0·77-0·81) proportional reduction in major vascular events per 1·0 mmol/L reduction in LDL cholesterol. We observed a significant reduction in major vascular events in all age groups. Although proportional reductions in major vascular events diminished slightly with age, this trend was not statistically significant (ptrend=0·06). Overall, statin or more intensive therapy yielded a 24% (RR 0·76, 95% CI 0·73-0·79) proportional reduction in major coronary events per 1·0 mmol/L reduction in LDL cholesterol, and with increasing age, we observed a trend towards smaller proportional risk reductions in major coronary events (ptrend=0·009). We observed a 25% (RR 0·75, 95% CI 0·73-0·78) proportional reduction in the risk of coronary revascularisation procedures with statin therapy or a more intensive statin regimen per 1·0 mmol/L lower LDL cholesterol, which did not differ significantly across age groups (ptrend=0·6). Similarly, the proportional reductions in stroke of any type (RR 0·84, 95% CI 0·80-0·89) did not differ significantly across age groups (ptrend=0·7). After exclusion of four trials which enrolled only patients with heart failure or undergoing renal dialysis (among whom statin therapy has not been shown to be effective), the trend to smaller proportional risk reductions with increasing age persisted for major coronary events (ptrend=0·01), and remained non-significant for major vascular events (ptrend=0·3). The proportional reduction in major vascular events was similar, irrespective of age, among patients with pre-existing vascular disease (ptrend=0·2), but appeared smaller among older than among younger individuals not known to have vascular disease (ptrend=0·05). We found a 12% (RR 0·88, 95% CI 0·85-0·91) proportional reduction in vascular mortality per 1·0 mmol/L reduction in LDL cholesterol, with a trend towards smaller proportional reductions with older age (ptrend=0·004), but this trend did not persist after exclusion of the heart failure or dialysis trials (ptrend=0·2). Statin therapy had no effect at any age on non-vascular mortality, cancer death, or cancer incidence.

INTERPRETATION:

Statin therapy produces significant reductions in major vascular events irrespective of age, but there is less direct evidence of benefit among patients older than 75 years who do not already have evidence of occlusive vascular disease. This limitation is now being addressed by further trials.

FUNDING:

Australian National Health and Medical Research Council, National Institute for Health Research Oxford Biomedical Research Centre, UK Medical Research Council, and British Heart Foundation.

Subscribe to cholesterol, LDL