cardiovascular diseases

Replacing sedentary time with physical activity: a 15-year follow-up of mortality in a national cohort

Author/s: 
Dohrn, Ing-Mari, Kwak, Lydia, Oja, Pekka, Sjöström, Michael, Hagströmer, Maria

BACKGROUND:

Sedentary behavior is associated with health risks in adults. The potential benefits of reducing sedentary time may be dependent not only on decrease per se, but also on the type of activity it replaces. Few longitudinal studies have investigated the effects on mortality when replacing objectively assessed sedentary time with another physical activity (PA) behavior.

OBJECTIVE:

To investigate the effects of replacing objectively assessed sedentary time with time in light-intensity PA or moderate-vigorous PA (MVPA) on all-cause mortality, cardiovascular disease (CVD) mortality or cancer mortality in a cohort with 15 years follow-up time.

METHODS:

In total, 851 women and men from the population-based Sweden Attitude Behaviour and Change study were included. Time spent sedentary, in light-intensity PA and in MVPA were assessed using an Actigraph 7164 accelerometer. Mortality data were obtained from Swedish registers. Cox proportional hazards models estimated hazard ratios (HR) of mortality with 95% confidence intervals (CI) and isotemporal substitution models were used to estimate the effect of replacing sedentary behavior with PA for the same amount of time.

RESULTS:

Over a follow-up of 14.2 years (SD 1.9) with 12,117 person-years at risk, 79 deaths occurred, 24 deaths from CVD, 27 from cancer, and 28 from other causes. Replacing 30 minutes/day of sedentary time with light-intensity PA was associated with significant reduction in all-cause mortality risk (HR: 0.89, 95% CI: 0.81-0.98) and CVD mortality risk (HR: 0.76, 95% CI: 0.63-0.92). Replacing 10 minutes of sedentary time with MVPA was associated with reduction in CVD mortality risk (HR: 0.62, 95% CI: 0.42-0.91). No statistically significant reductions were found for cancer mortality.

CONCLUSION:

This statistical modelling study suggests that replacing sedentary time with light-intensity PA could have beneficial effect on both all-cause mortality and CVD mortality. Replacing sedentary time with MVPA could reduce CVD mortality.

Keywords 

Aspirin for the Primary Prevention of Cardiovascular Disease: Weighing Up the Evidence

Author/s: 
Murphy, Sean, McCarthy, Cian P., McEvoy, John W.

Aspirin is one of the most universally recognized and commonly prescribed medications worldwide. It is estimated that 48.7 million U.S. adults are taking aspirin for cardiovascular disease prevention; the majority (~73%) for primary prevention. The benefit of aspirin for secondary prevention of cardiovascular disease is well-established, with meta-analysis results favoring low dose (75–150 mg/day) over high dose (>150 mg/day) aspirin given similar efficacy but lower bleeding risk. In contrast, the role of aspirin in primary cardiovascular disease prevention is more controversial; historical trials found benefit but trials since 2008 have shown either null effects on all-cause and cardiovascular disease mortality or a signal for increased mortality in the context of excess bleeding.

A Randomized Trial of Intensive versus Standard Blood-Pressure Control

Author/s: 
The SPRINT Research Group

BACKGROUND

The most appropriate targets for systolic blood pressure to reduce cardiovascular morbidity and mortality among persons without diabetes remain uncertain.

METHODS

We randomly assigned 9361 persons with a systolic blood pressure of 130 mm Hg or higher and an increased cardiovascular risk, but without diabetes, to a systolic blood-pressure target of less than 120 mm Hg (intensive treatment) or a target of less than 140 mm Hg (standard treatment). The primary composite outcome was myocardial infarction, other acute coronary syndromes, stroke, heart failure, or death from cardiovascular causes.

RESULTS

At 1 year, the mean systolic blood pressure was 121.4 mm Hg in the intensive-treatment group and 136.2 mm Hg in the standard-treatment group. The intervention was stopped early after a median follow-up of 3.26 years owing to a significantly lower rate of the primary composite outcome in the intensive-treatment group than in the standard-treatment group (1.65% per year vs. 2.19% per year; hazard ratio with intensive treatment, 0.75; 95% confidence interval [CI], 0.64 to 0.89; P<0.001). All-cause mortality was also significantly lower in the intensive-treatment group (hazard ratio, 0.73; 95% CI, 0.60 to 0.90; P=0.003). Rates of serious adverse events of hypotension, syncope, electrolyte abnormalities, and acute kidney injury or failure, but not of injurious falls, were higher in the intensive-treatment group than in the standard-treatment group.

CONCLUSIONS

Among patients at high risk for cardiovascular events but without diabetes, targeting a systolic blood pressure of less than 120 mm Hg, as compared with less than 140 mm Hg, resulted in lower rates of fatal and nonfatal major cardiovascular events and death from any cause, although significantly higher rates of some adverse events were observed in the intensive-treatment group. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT01206062.)

Association of Aspirin Use for Primary Prevention With Cardiovascular Events and Bleeding Events: A Systematic Review and Meta-analysis

Author/s: 
Zheng, Sean L., Roddick, Alistair J.

IMPORTANCE:

The role for aspirin in cardiovascular primary prevention remains controversial, with potential benefits limited by an increased bleeding risk.

OBJECTIVE:

To assess the association of aspirin use for primary prevention with cardiovascular events and bleeding.

DATA SOURCES:

PubMed and Embase were searched on Cochrane Library Central Register of Controlled Trials from the earliest available date through November 1, 2018.

STUDY SELECTION:

Randomized clinical trials enrolling at least 1000 participants with no known cardiovascular disease and a follow-up of at least 12 months were included. Included studies compared aspirin use with no aspirin (placebo or no treatment).

DATA EXTRACTION AND SYNTHESIS:

Data were screened and extracted independently by both investigators. Bayesian and frequentist meta-analyses were performed.

MAIN OUTCOMES AND MEASURES:

The primary cardiovascular outcome was a composite of cardiovascular mortality, nonfatal myocardial infarction, and nonfatal stroke. The primary bleeding outcome was any major bleeding (defined by the individual studies).

RESULTS:

A total of 13 trials randomizing 164 225 participants with 1 050 511 participant-years of follow-up were included. The median age of trial participants was 62 years (range, 53-74), 77 501 (47%) were men, 30 361 (19%) had diabetes, and the median baseline risk of the primary cardiovascular outcome was 9.2% (range, 2.6%-15.9%). Aspirin use was associated with significant reductions in the composite cardiovascular outcome compared with no aspirin (57.1 per 10 000 participant-years with aspirin and 61.4 per 10 000 participant-years with no aspirin) (hazard ratio [HR], 0.89 [95% credible interval, 0.84-0.95]; absolute risk reduction, 0.38% [95% CI, 0.20%-0.55%]; number needed to treat, 265). Aspirin use was associated with an increased risk of major bleeding events compared with no aspirin (23.1 per 10 000 participant-years with aspirin and 16.4 per 10 000 participant-years with no aspirin) (HR, 1.43 [95% credible interval, 1.30-1.56]; absolute risk increase, 0.47% [95% CI, 0.34%-0.62%]; number needed to harm, 210).

CONCLUSIONS AND RELEVANCE:

The use of aspirin in individuals without cardiovascular disease was associated with a lower risk of cardiovascular events and an increased risk of major bleeding. This information may inform discussions with patients about aspirin for primary prevention of cardiovascular events and bleeding.

Prediction of individual life-years gained without cardiovascular events from lipid, blood pressure, glucose, and aspirin treatment based on data of more than 500 000 patients with Type 2 diabetes mellitus

Author/s: 
Berkelmans, Gijs F N, Gudbjörnsdottir, Soffia, Visseren, Frank L J, Wild, Sarah H, Franzen, Stefan, Chalmers, John, Davis, Barry R, Poulter, Neil R, Spijkerman, Annemieke M, Woodward, Mark, Pressel, Sara L, Gupta, Ajay K, van der Schouw, Yvonne T, Svensson, Ann-Marie

AIMS:

Although group-level effectiveness of lipid, blood pressure, glucose, and aspirin treatment for prevention of cardiovascular disease (CVD) has been proven by trials, important differences in absolute effectiveness exist between individuals. We aim to develop and validate a prediction tool for individualizing lifelong CVD prevention in people with Type 2 diabetes mellitus (T2DM) predicting life-years gained without myocardial infarction or stroke.

METHODS AND RESULTS:

We developed and validated the Diabetes Lifetime-perspective prediction (DIAL) model, consisting of two complementary competing risk adjusted Cox proportional hazards functions using data from people with T2DM registered in the Swedish National Diabetes Registry (n = 389 366). Competing outcomes were (i) CVD events (vascular mortality, myocardial infarction, or stroke) and (ii) non-vascular mortality. Predictors were age, sex, smoking, systolic blood pressure, body mass index, haemoglobin A1c, estimated glomerular filtration rate, non- high-density lipoprotein cholesterol, albuminuria, T2DM duration, insulin treatment, and history of CVD. External validation was performed using data from the ADVANCE, ACCORD, ASCOT and ALLHAT-LLT-trials, the SMART and EPIC-NL cohorts, and the Scottish diabetes register (total n = 197 785). Predicted and observed CVD-free survival showed good agreement in all validation sets. C-statistics for prediction of CVD were 0.83 (95% confidence interval: 0.83-0.84) and 0.64-0.65 for internal and external validation, respectively. We provide an interactive calculator at www.U-Prevent.com that combines model predictions with relative treatment effects from trials to predict individual benefit from preventive treatment.

CONCLUSION:

Cardiovascular disease-free life expectancy and effects of lifelong prevention in terms of CVD-free life-years gained can be estimated for people with T2DM using readily available clinical characteristics. Predictions of individual-level treatment effects facilitate translation of trial results to individual patients.

Subscribe to cardiovascular diseases