Bibliometrics

Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review

Author/s: 
Groff, D., Sun, A., Ssentongo, A. E., Ba, D. M., Parsons, N., Poudel, G. R., Lekoubou, A., Oh, J. S., Ericson, J. E., Ssentongo, P., Chinchilli, V. M.

Importance
Short-term and long-term persistent postacute sequelae of COVID-19 (PASC) have not been systematically evaluated. The incidence and evolution of PASC are dependent on time from infection, organ systems and tissue affected, vaccination status, variant of the virus, and geographic region.

Objective
To estimate organ system–specific frequency and evolution of PASC.

Evidence Review
PubMed (MEDLINE), Scopus, the World Health Organization Global Literature on Coronavirus Disease, and CoronaCentral databases were searched from December 2019 through March 2021. A total of 2100 studies were identified from databases and through cited references. Studies providing data on PASC in children and adults were included. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines for abstracting data were followed and performed independently by 2 reviewers. Quality was assessed using the Newcastle-Ottawa Scale for cohort studies. The main outcome was frequency of PASC diagnosed by (1) laboratory investigation, (2) radiologic pathology, and (3) clinical signs and symptoms. PASC were classified by organ system, ie, neurologic; cardiovascular; respiratory; digestive; dermatologic; and ear, nose, and throat as well as mental health, constitutional symptoms, and functional mobility.

Findings
From a total of 2100 studies identified, 57 studies with 250 351 survivors of COVID-19 met inclusion criteria. The mean (SD) age of survivors was 54.4 (8.9) years, 140 196 (56%) were male, and 197 777 (79%) were hospitalized during acute COVID-19. High-income countries contributed 45 studies (79%). The median (IQR) proportion of COVID-19 survivors experiencing at least 1 PASC was 54.0% (45.0%-69.0%; 13 studies) at 1 month (short-term), 55.0% (34.8%-65.5%; 38 studies) at 2 to 5 months (intermediate-term), and 54.0% (31.0%-67.0%; 9 studies) at 6 or more months (long-term). Most prevalent pulmonary sequelae, neurologic disorders, mental health disorders, functional mobility impairments, and general and constitutional symptoms were chest imaging abnormality (median [IQR], 62.2% [45.8%-76.5%]), difficulty concentrating (median [IQR], 23.8% [20.4%-25.9%]), generalized anxiety disorder (median [IQR], 29.6% [14.0%-44.0%]), general functional impairments (median [IQR], 44.0% [23.4%-62.6%]), and fatigue or muscle weakness (median [IQR], 37.5% [25.4%-54.5%]), respectively. Other frequently reported symptoms included cardiac, dermatologic, digestive, and ear, nose, and throat disorders.

Conclusions and Relevance
In this systematic review, more than half of COVID-19 survivors experienced PASC 6 months after recovery. The most common PASC involved functional mobility impairments, pulmonary abnormalities, and mental health disorders. These long-term PASC effects occur on a scale that could overwhelm existing health care capacity, particularly in low- and middle-income countries.

Living Systematic Review on Cannabis and Other Plant-Based Treatments for Chronic Pain

Author/s: 
McDonagh, M. S., Wagner, J., Ahmed, A. Y., Morasco, B., Kansagara, D., Chou, R.

Objectives. To evaluate the evidence on benefits and harms of cannabinoids and similar plant-based compounds to treat chronic pain.

Data sources. Ovid® MEDLINE®, PsycINFO®, Embase®, the Cochrane Library, and SCOPUS® databases, reference lists of included studies, submissions received after Federal Register request were searched to July 2021.

Review methods. Using dual review, we screened search results for randomized controlled trials (RCTs) and observational studies of patients with chronic pain evaluating cannabis, kratom, and similar compounds with any comparison group and at least 1 month of treatment or followup. Dual review was used to abstract study data, assess study-level risk of bias, and rate the strength of evidence. Prioritized outcomes included pain, overall function, and adverse events. We grouped studies that assessed tetrahydrocannabinol (THC) and/or cannabidiol (CBD) based on their THC to CBD ratio and categorized them as high-THC to CBD ratio, comparable THC to CBD ratio, and low-THC to CBD ratio. We also grouped studies by whether the product was a whole-plant product (cannabis), cannabinoids extracted or purified from a whole plant, or synthetic. We conducted meta-analyses using the profile likelihood random effects model and assessed between-study heterogeneity using Cochran’s Q statistic chi square and the I2 test for inconsistency. Magnitude of benefit was categorized into no effect or small, moderate, and large effects.

Results. From 2,850 abstracts, 20 RCTs (N=1,776) and 7 observational studies (N=13,095) assessing different cannabinoids were included; none of kratom. Studies were primarily short term, and 75 percent enrolled patients with a variety of neuropathic pain. Comparators were primarily placebo or usual care. The strength of evidence (SOE) was low, unless otherwise noted. Compared with placebo, comparable THC to CBD ratio oral spray was associated with a small benefit in change in pain severity (7 RCTs, N=632, 0 to10 scale, mean difference [MD] −0.54, 95% confidence interval [CI] −0.95 to −0.19, I2=28%; SOE: moderate) and overall function (6 RCTs, N=616, 0 to 10 scale, MD −0.42, 95% CI −0.73 to −0.16, I2=24%). There was no effect on study withdrawals due to adverse events. There was a large increased risk of dizziness and sedation and a moderate increased risk of nausea (dizziness: 6 RCTs, N=866, 30% vs. 8%, relative risk [RR] 3.57, 95% CI 2.42 to 5.60, I2=0%; sedation: 6 RCTs, N=866, 22% vs. 16%, RR 5.04, 95% CI 2.10 to 11.89, I2=0%; and nausea: 6 RCTs, N=866, 13% vs. 7.5%, RR 1.79, 95% CI 1.20 to 2.78, I2=0%). Synthetic products with high-THC to CBD ratios were associated with a moderate improvement in pain severity, a moderate increase in sedation, and a large increase in nausea (pain: 6 RCTs, N=390 to 10 scale, MD −1.15, 95% CI −1.99 to −0.54, I2=39%; sedation: 3 RCTs, N=335, 19% vs. 10%, RR 1.73, 95% CI 1.03 to 4.63, I2=0%; nausea: 2 RCTs, N=302, 12% vs. 6%, RR 2.19, 95% CI 0.77 to 5.39; I²=0%). We found moderate SOE for a large increased risk of dizziness (2 RCTs, 32% vs. 11%, RR 2.74, 95% CI 1.47 to 6.86, I2=0%). Extracted whole-plant products with high-THC to CBD ratios (oral) were associated with a large increased risk of study withdrawal due to adverse events (1 RCT, 13.9% vs. 5.7%, RR 3.12, 95% CI 1.54 to 6.33) and dizziness (1 RCT, 62.2% vs. 7.5%, RR 8.34, 95% CI 4.53 to 15.34). We observed a moderate improvement in pain severity when combining all studies of high-THC to CBD ratio (8 RCTs, N=684, MD −1.25, 95% CI −2.09 to −0.71, I2=50%; SOE: moderate). Evidence on whole-plant cannabis, topical CBD, low-THC to CBD, other cannabinoids, comparisons with active products, and impact on use of opioids was insufficient to draw conclusions. Other important harms (psychosis, cannabis use disorder, and cognitive effects) were not reported.

Conclusions. Low to moderate strength evidence suggests small to moderate improvements in pain (mostly neuropathic), and moderate to large increases in common adverse events (dizziness, sedation, nausea) and study withdrawal due to adverse events with high- and comparable THC to CBD ratio extracted cannabinoids and synthetic products in short-term treatment (1 to 6 months). Evidence for whole-plant cannabis, and other comparisons, outcomes, and PBCs were unavailable or insufficient to draw conclusions. Small sample sizes, lack of evidence for moderate and long-term use and other key outcomes, such as other adverse events and impact on use of opioids during treatment, indicate that more research is needed.

Subscribe to Bibliometrics